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Abstract. An interpretation of scale-invariant multiplicity fluctuations inside hadronic jets is presented. It
is based on the branching mechanism with the angular ordering of soft partons in sequential branchings.
A relationship with fractal distributions is demonstrated. The model takes into account the finiteness of
the number of particles produced in jets (finite energy) and leads to a good description of the multifractal
fluctuations observed in e+e− processes.

1 Introduction

In the case of e+e− annihilation processes the asymptotic
collinear and infrared contributions to gluon cross sections
can be described in Double Leading Log Approximation
(DLLA) by a Markov process (see [1] for a review). This
semi-classical description takes into account soft gluon in-
terference effects on the basis of the angular ordering pre-
scription when the parton emission is described by succes-
sive branchings and the available phase space is reduced
to ever smaller angular regions (color coherence effects).
The corresponding QCD master equation is an integral
one and is based on Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi energy-distribution kernels.

In the framework of this description, progress has been
made in obtaining angular scale-invariant1 correlations be-
tween partons [2] (see [3] for a review). This approach, by
conception, is a correlation one, based on the method of
characteristic functionals. Hence, to derive directly mea-
surable quantities such as normalized factorial moments or
factorial cumulants, one needs to perform an integration
of the correlation functions over the restricted phase-space
region under study. This is possible only after the use of
many approximations and by identifying the phase-space
regions which give the leading contributions [3].

Apart from this problem, there are also more basic
questions which restrict the direct comparison of the QCD
correlation approach with experimental data. Firstly, the
perturbative QCD calculations deal with an asymptotic
behavior of the multiparton correlations valid only for
very high energies. In an idealized jet, therefore, finite
parton multiplicities in small phase-space bins and energy-
momentum conservation effects are systematically ignored
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1 The scale-invariance means that a dynamical characteristic
X(l) of correlations/fluctuations at a given resolution l has the
property X(λl) = λ−LX(l) with a constant L characterizing
dynamics of a multiparticle system

[2]. This is one of the most important reasons leading
to disagreements between the analytical predictions and
e+e− data [4,5]. Secondly, the increase of the coupling con-
stant for very small phase-space regions sets a limit for the
validity of perturbative QCD. Thirdly, non-perturbative
effects such as hadronization, resonance decays and Bose-
Einstein correlations complicate the comparison of theo-
retical many-particle inclusive densities with the data even
at LEP1 energies [4,5].

In this paper, therefore, we propose a new way to
study the correlations in terms of fluctuations in the mul-
tihadronic systems produced in high-energy processes. Be-
ing based on a fluctuation approach to intermittency phe-
nomenon (see recent reviews [6,7] on the subject of in-
termittency), the model a priori takes into account the
finiteness of the number of particles in a single event (fi-
nite energies). In order to describe the local multiplicity
fluctuations, we adopted the differential Markov equation
for parton branching, which has been used to describe
global multiplicity fluctuations in high-energy physics in
[8–11] (see also references in [7]).

One of the key ideas of this approach is that, in con-
trast to a full phase space, a Markov branching process
inside a small phase-space window of size δ can be char-
acterized by a probability Pn(t, δ) of detecting n parti-
cles, in which a dependence on an evolution parameter t
can be factorized from a phase-space δ-dependence (see
Sect. 2). As a consequence of this assumption, the scale-
invariant fluctuations experimentally observed inside jets
[12] may be considered as a result of fractal phase-space
distribution for each particle emitted in successive Markov
branchings (Sect. 3). Such an idea ultimately leads to the
possibility of taking into account an inhomogeneity of the
parton correlations inside a jet and a fairly good quantita-
tive agreement with the e+e−-annihilation data [12] and
the JETSET 7.4 PS model [13] (Sect. 4).
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2 Statistical treatment of branchings

2.1 Global equation

At high energies, gluons dominate the parton-parton cross
section due to the large color factor and the infrared singu-
larity. This means that a good high-energy approximation
should consider gluon branching only. For generality, how-
ever, we shall consider both gluons and quarks treating
them as partons.

Let t be the evolution parameter of the parton branch-
ing process. The t can be related to the parton virtuality
Q and can be defined in the usual way [8–11]. However,
hereafter we shall never refer to the explicit form of this
parameter and shall regard it as representing the extent
of branching or just time. We assume that the branching
process starts with t = 0 and continues until some tmax
determined by a QCD cut-off Q0. The initial condition
for the probability distribution Pn(t) of having n particles
radiated by the initial one is

Pn=0(t = 0) = 1, Pn 6=0(t = 0) = 0. (1)

In the following we shall see that, under the assump-
tions to be made below, the structure of local fluctuations
depends neither on the particular definition of the evolu-
tion parameter, nor on the initial conditions. The purpose
of the introduction of (1) is only to give an illustration
of the notion of a typical initiation of the cascade and its
further evolution.

A probabilistic scheme [1] of the perturbative parton
shower is based on classical picture of the Markov chains
of independent parton splittings. Each elementary parton
decay depends on just the nearest “forefather”. Let us de-
fine W1dt as the probability of branching a → b+c during
a small range of t, dt, according to one of the following
decays: g → gg, q → qg, and g → q̄q. The infinitesimal
probability W1 in the leading log picture can be written
as

W1 =
∑
a,b

∫ 1

0
dz

αs

2π
Pa→bc(z), (2)

where αs is the strong coupling constant and Pa→bc(z) are
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi energy-
distribution kernels. The sum runs over all allowed par-
ton branchings. For our simplified model, we will consider
the case with αs = const, so that W1 is a (divergent)
constant which does not depend on t.

If there are n partons, the probability of the parton
emission increases. Let Wnd t be the probability that the
parton system with multiplicity n radiates a new parton
during the infinitesimal interval (t, t+∆t). Generally, Wn

depends on the parton multiplicity n. This can be taken
into account as

Wn = w(n)W1, w(1) = 1, (3)

where w(n) is a function of n reflecting an increase of the
parton radiation. Then the Markov pure birth evolution

equation for the multiplicity distribution Pn(t) of having
n partons at time t is well-known [14]:

∂Pn(t)
∂t

= Wn−1Pn−1(t) − WnPn(t). (4)

The solution of this equation is a global multiplicity dis-
tribution Pn(t). Since the equation contains ingredients of
perturbative QCD, an essential point is to regularize W1
and consider the branching evolution up to tmax deter-
mined by the QCD cut-off Q0. In order to compare the
Pn(tmax) with the data, one usually resorts to the local
parton-hadron duality hypothesis which states that n for
partons is proportional to the n for observed hadrons.

The differential Eq. (4) with constant (t-independent)
vertex probabilities Wn has been analyzed in [8–11]. One
of the most popular solutions is a negative binomial dis-
tribution which was derived in the leading log picture for
gluons in quark jet [9]. Deviations from this distribution
observed in e+e− annihilation data are usually connected
with the shoulder structure and a quasi-oscillatory behav-
ior of Hq moments seen at Z0 peak. Recently, however,
the negative binomial distribution has been reestablished
again: In was shown that the full-phase-space multiplicity
distribution for e+e− annihilation data can be well repro-
duced by a weighted superposition of two negative bino-
mial distributions [15,16], associated to two- and multi-
jet events or the contributions from bb̄ and light flavored
events.

For the full phase space, there is no physical reason
to define Wn in momentum space: The global distribu-
tion is momentum independent. However, to obtain vari-
ous momentum characteristics of particle spectra (such as
the multiplicity of partons above a fixed momentum), a
more complex integro-differential equations should be an-
alyzed [8,1]. Below we will discuss another way to include
a momentum dependence using a statistical projection of
Eq. (4) into momentum phase-space domains.

2.2 Local equation

Obviously, if one counts only the particles produced within
a certain small range of phase space, not all particles can
be detected in it. Let γn(δ) be the probability of observing
one particle in a phase-space domain of size δ if this parti-
cle belongs to the parton system of multiplicity n + 1 ≥ 1
in the full phase space. We put

0 ≤ γn(δ) ≤ 1, (5)

so that

γn(δ = 0) = 0, γn(δ = Ω) = 1, (6)

where Ω is the size of full phase space (δ ≤ Ω) which can
be defined in 3-momentum phase space or, say, in rapidity,
pt or azimuthal angle.

For a phase-space element of size δ, if the system is in
state n at time t, the probability of the transition n →
n + 1 in the interval (t, t + ∆t) is

γn(δ)Wn∆t + o(∆t, δ),
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where, as before, Wn describes the emission of one particle
into the full phase-space Ω and the factor γn(δ) describes
the probability of hitting δ by this particle. The factor-
ization property of the infinitesimal probability γn(δ)Wn

is an essential assumption used to simplify the structure
of parton evolution. We also assume that the probability
Pn(t + ∆t, δ) of having n particles inside δ at t + ∆t is
fully determined by Pn(t, δ) and Pn−1(t, δ) in the same δ.
In fact, for a particular (“angular”) choice of phase space,
this is consistent with the coherent branching with angular
ordering, since the contribution of particles from phase-
space regions outside of δ is considered to be very small
(see the discussion below). On the basis of these assump-
tions, one can write

Pn(t + ∆t, δ) = γn−1(δ)Wn−1Pn−1(t, δ)∆t

+(1 − γn(δ)Wn∆t)Pn(t, δ) + o(∆t, δ),

where the second term is due to probability conservation.
Then the corresponding Markov equation for the local
multiplicity distribution Pn(t, δ) is

∂Pn(t, δ)
∂t

= γn−1(δ)Wn−1Pn−1(t, δ) − γn(δ) WnPn(t, δ).

(7)
As we see, from the point of view of an observer counting
particles in δ, the restriction of the phase-space domain
looks as an effective suppression of the birth rate Wn.
(c.f.(4)). Note also that, in contrast to (4), eq. (7) contains
a momentum dependence via γn(δ).

It is necessary to note that condition (5) comes from
a probabilistic interpretation of γn(δ). Generally, as Wn,
this quantity can be larger than unity. However, if this
is the case, we can carry out the following transition:
γn(δ) → Zγn(δ), where Z is a constant, so that the con-
dition (6) for Zγn(δ) can hold. As we shall see below, this
regularization does not change the structure of observable
fluctuations derived from (7).

Clearly, a possible non-linear nature of Eq. (7) renders
its explicit solution very difficult. It can be solved in a
straightforward manner only for some particular forms of
the vertex probabilities Wn and γn(δ).

2.3 Phase-space property in the factorization scheme

We will be interested in a general solution of (7) with
respect to the possible behavior of the probability Pn(t, δ)
as a function of γn(δ).

For n = 0, the solution can be easily obtained

P0(t, δ) = exp
(

−γ0(δ)
∫

W0dt

)
. (8)

This exponential form of P0 is similar to the Sudakov form
factor. In contrast to the full phase space, the integral
contains the suppression factor γ0(δ) taking into account
the fact that a particle can be emitted outside of the small
phase-space interval.

The form of Pn(t, δ) for n ≥ 0 cannot be obtained
without knowing the form of Wn and γn(δ). However, a

phase-space structure of such a solution can be deduced
in a general case. Since the basic idea of this approach is
to factorize the phase-space and t-dependent component,
let us look for the solution of (7) in the form

Pn(t, δ) = fn(t)pn(δ) + o(t, δ), n ≥ 1, (9)

where fn(t) is a δ-independent and pn(δ) is t-independent
well integrable functions. We assume that (9) has a sense
for any t at a sufficiently small δ.

Using (9), (7) can be rewritten as

p1(δ)
P0(t, δ)

= γ0(δ)b1, (10)

pn(δ)
pn−1(δ)

= γn−1(δ) bn, n ≥ 2, (11)

bn =
Wn−1fn−1(t)

f ′
n(t) + fn(t)Wnγn(δ)

, f0(t) = 1. (12)

Since we are looking for a solution at small δ, γn(δ) has
a small value. Therefore, bn can be approximated by the
δ-independent constant,

bn ' Wn−1fn−1(t)
f ′

n(t)
. (13)

Further, the assumption (9) holds only if bn is independent
of t for n ≥ 2. For a given Wn, (13) can be solved with
respect to the form of fn(t). However, the δ-dependence
of Pn(δ, t) has already been obtained. It reads

Pn(t, δ)
Pn−1(t, δ)

' γn−1(δ) bn
fn(t)

fn−1(t)

' γn−1(δ)Wn−1
fn(t)
f ′

n(t)
, n ≥ 1. (14)

Let us remind that this relation is assumed to be possible
only if δ is small. In this case, the solution for Pn(δ, t) may
be factorized as in (9) (see an example in Subsect. 2.5).

Of course, to study the distribution Pn(t, δ) as a func-
tion of δ by means of factorial moments or cumulants
might technically be a very difficult task. However, hav-
ing in mind the bunching-parameter method [17–19], this
distribution can easily be analyzed. Bunching parameters
(BPs) ηq(t, δ) are defined as

ηq(t, δ) =
q

q − 1
Pq(t, δ)Pq−2(t, δ)

P 2
q−1(t, δ)

. (15)

They measure the deviation of the multiplicity distribu-
tion Pn(t, δ) from a Poisson one for which the BPs are
equal to unity. Generally, in the case of no dynamical
phase-space correlations, ηq(t, δ) are δ-independent.

The BP of an arbitrary order q for (14) can be written
as

ηq(t, δ) = ηq(t) ηq(δ), (16)

ηq(t) =
w(q − 1)
w(q − 2)

fqf
′
q−1

f ′
qfq−1

, (17)
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where ηq(δ) depends only on the phase-space interval,

ηq(δ) =
q

q − 1
γq−1(δ)
γq−2(δ)

. (18)

As we see, the structure of ηq(t, δ) is quite remarkable.
It contains a t−dependent function ηq(t) constructed from
unknown w(n) and fn(t), so that Eq. (7) itself can have
strong non-linear property. However, since we study the
fluctuations at ever smaller δ, this function is unrelevant:
The property of the local fluctuations is fully determined
by the ratio γq−1(δ)/γq−2(δ).

Note that while the original Eq. (7) is constructed from
the divergent constants Wn = w(n)W1, the final result for
the BPs does not contain them directly, since W1 cancels
in (17). However, (7) contains them indirectly via fn(t).
We can handle this problem since the regularization pro-
cedure γn(δ) → Z γn(δ) discussed in Subsect. 2.2 does not
change the BPs (17) and, hence, the observable fluctua-
tions. According to this, one can always redefine γn(δ) as
γn(δ) → W−1

1 γn(δ), so that W1 cancels already in (7).

2.4 Markov birth-death process

The same phase-space behavior (18) of the BPs can be
obtained from a stationary Markov birth-death evolution
equation. For small δ, this process has to be characterized
by the birth rate γn(δ)W+

n and the death rate W−
n due to

the fusion (absorption) processes such as gg → g, qg → q
and q̄q → g. These effects are not important for the full
phase-space. However, for small δ, the values of γn(δ)W+

n

and W−
n can be comparable. The local equation reads

∂Pn(t, δ)
∂t

= γn−1(δ)W+
n−1Pn−1(t, δ) + W−

n+1Pn+1(t, δ)

− [γn(δ) W+
n + W−

n

]
Pn(t, δ).

Assuming that for very small δ the process is a stationary,
∂Pn/∂t ∼ 0, one can derive (see details in [20])

Pn(δ)
Pn−1(δ)

=
W+

n−1

W−
n

γn−1(δ), (19)

which is similar to (14). Hence, BPs have the same form
as (16), with the phase-space dependence as in (18). The
only difference is that ηq(t) in (17) does not depend on t
and has the form:

ηq =

(
W+

q−1

W+
q−2

)(
W−

q−1

W−
q

)
. (20)

Note that the stationary (equilibrium) regime is a
strong assumption. It cannot be applied to the full phase
space. For local phase-space domains, the physical situa-
tion is somewhat different: Each emitted parton increases
the phase space for further emissions and the total phase
space is expanded with increasing t. However, if one counts
the particles inside a selected small phase-space window,
one may assume that there is a little change in the density

of partons inside δ with increasing t and, hence, Pn(t, δ)
does not depend strongly on t. This assumption can be
verified experimentally by observing t-independence of the
BPs.

2.5 Fully independent emission

A simple example of the approach discussed above pro-
vides a fully independent particle emission. For this we
should use the following assumptions:

1) Wn in (7) does not depend on n, i.e. w(n) = 1,
Wn = W1;

2) γn(δ) does not depend on n, γn(δ) = γ(δ).

Under these conditions, Eq. (7) can be easily
solved. The solution is a Poisson distribution,

Pn(δ) = an exp(−a)/n!, a = W1 t γ(δ). (21)

The behavior of this distribution at small δ can be factor-
ized as in (9),

Pn(δ) ' (W1 t)nγn(δ)/n! + o(γn(δ)),

so that the corresponding BPs are unity. Note that for
(21) this is true not only locally (δ → 0), but also for any
δ. For a uniform phase-space distribution, γ(δ) is simply
equal to δ/∆.

Generally, an independent phase-space particle pro-
duction can be characterized by any Wn with γn(δ) =
γ(δ). In this case the BPs are δ-independent constants.

3 Local fluctuations in the model

3.1 Statistically averaged picture of a jet

To study the phase-space dependence of fluctuations, the
next step is to understand a possible behavior of γn(δ) in
(18).

We shall start our consideration with a simple two-
dimensional model of a jet in angular intervals. Let us
consider the first parton emitted at some angle with re-
spect to the initial quark. Since we are interested in a
picture averaged over all events, let Ω0 be the maximum
possible size of solid angle, so that the first parton always
has an angle inside the cone Ω0 (see Fig. 1). After its emis-
sion, the first parton radiates the next one at some angle
with respect to its own direction of flight. Generally, we
assume that there is recoil effect and the first parton can
change its direction after this radiation. In this case, the
solid angular window available for both partons becomes
larger and is equal to Ω1 > Ω0. The second parton then
splits into two new partons at Ω2 and so on. One can fur-
ther simplify the model taking into the account angular
ordering when available phase space is reduced for suc-
cessive branchings. In this case Ω0 ' Ω1 ' Ω2 ' . . . Ωn.

Let us tern to a more detailed description in one di-
mension. First, let us define Θ as the polar angle between
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Ω
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1

Fig. 1. A schematic representation of the phase-space struc-
ture of branching inside jet. It makes use the angular ordering
prescription: The structure of the cascade inside δΩ is deter-
mined by the “history” of this cascade inside the same δΩ.
Infinitesimal probabilities Wn (not shown) control the struc-
ture of the cascade for full phase space Ωn. Local infinitesimal
probabilities γnWn determine the structure of cascade inside
δΩ

the directions of motion of the emitted and the parent
parton. The single-particle distribution ρ(Θ) of the gluon
bremsstrahlung can be approximated [2,3] at small Θ by

ρ(Θ) = C(Q0, αs)Θ−1, (22)

integrating the overall distribution over the azimuthal an-
gle around the quark direction and momentum depen-
dence. The Θ-independent constant C(Q0, αs) contains a
transverse momentum cut-off Q0 and αs which is treated
here as a constant. The probability γ0(δΘ) of finding the
gluon inside the small interval (Θ0 − δΘ, Θ0) near a jet
opening angle Θ0 is

γ0(δΘ) ∝
∫ Θ0

Θ0−δΘ

ρ(Θ)dΘ ∼ δΘD0 , D0 = 1 (23)

for δΘ → 0. Note that this result does not depend es-
sentially on the details of the density ρ(Θ), since it has
no singularity near Θ0. We did not specify a coefficient
of proportionality between γ0(δΘ) and δΘD0 : As we have
seen before, the phase-space dependence of the fluctua-
tions does not depend on it.

Now let us consider the behavior of γ1(Θ) for the sec-
ond parton. Since we are interested in the probability of
emission of this parton into (Θ0−δΘ, Θ0) under the condi-
tion that the first parton is inside the same interval, there
is a larger probability of hitting this interval by the second
parton because of the collinear singularity. Now the major
problems in the calculating γ1(Θ) are: 1) An ambiguity in
the position of the first parton inside δΘ; 2) Singularity
of ρ(Θ) near Θ ∼ 0 gives a dominant contribution. This
leads to a very inhomogeneous phase-space distribution
near Θ0; 3) Requirement of the angular ordering.

Due to the reasons quoted above, the calculation of
γn(Θ) for n > 1 is even more difficult. We shall make no
attempts to calculate γn(Θ). In a general case, for small
δΘ, we assume

γn(δΘ) ∝ δΘDn , n ≥ 1, (24)

where Dn are δΘ-independent constants controlling the
collinear singularities together with the angular ordering
restrictions of the phase space available for particles on
(n + 1)th multiplicity stage. The latter effect decreases
the available phase space for the next soft offspring par-
tons that would increase the probability of detecting them
inside δΘ. We assume,

D0 ≥ D1 ≥ D2 ≥ . . . ≥ D∞. (25)

In Subsect. 3.2 we shall give an interpretation of the be-
havior (24) and (25) in terms of fractal distributions. Then
we shall see that the behavior of γn(δΘ) for small δΘ is
the only simplest choice which allows to describe experi-
mental data. In Sect. 4 we shall proceed with the physical
interpretation of these quantities.

There are a number of special cases of interest:

1) Monofractal fluctuations
This case corresponds to the situation when the phase-

space distributions for all cascade stages (except the initial
one) have the same non-uniformity characterized by D1,
i.e.,

γ0(δΘ) ∝ δΘD0 , γn>0(δΘ) ∝ δΘD1 . (26)

Making use of (16), the BPs are

η2(δΘ) ∝ δΘD1−D0 , ηq>2(δΘ) = const. (27)

Hence, we obtain the monofractal behavior with d2 = D0−
D1 [17,18].

For cascade branchings, such a situation can be consid-
ered as a highly unrealistic since it totally disregards that
daughter partons have ever larger probability to be emit-
ted inside δΘ because of the correlations. Therefore, the
monofractal type of intermittency possibly observed for
some nucleus-nucleus reactions may mainly be attributed
to other dynamical mechanisms [21], rather than to actual
cascade processes with angular ordering.

2) Multifractal fluctuations
If particles on each cascade stage are distributed dif-

ferently, then the cascade stage with the multiplicity n+1
should be characterized by its own Dn, i.e.,

γn≥0(δΘ) ∝ δΘDn . (28)

The corresponding BPs are

ηq(δΘ) ∝ δΘ−αq , αq = Dq−2 − Dq−1. (29)

An inverse relation for Dn reads

Dn = D0 −
n+1∑
i=2

αi. (30)

According to [17,18], one has a multifractal behavior. An
example of such a behavior will be given in Subsect. 3.4.
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3.2 Connection with fractals

The simplicity of the model allows a natural connection
of it with fractals. In this subsection we shall see that Dn

introduced in (24) are nothing but fractal dimensions.
First, let us remind a standard definition of a fractal

distribution. Let us assume that there is a large number
Ntot of particles distributed over a phase space with the
topological (Euclidean) integer dimension D (D = 1, 2, 3).
Let N (ε) be the number of particles counted inside the
phase-space domain with a linear size ε. The number N (ε)
and ε are related as

N (ε) ∝ εD, ε → 0, (31)

where D is a fractal dimension, corresponding to the so-
called box-counting (or mass, cluster etc.) dimension [23].
If the distribution is extremely inhomogeneous, D has a
non-integer value (D < D). If particles were uniformly
distributed over the phase space, D is integer (D = D).
Therefore, D is a very economical way to describe the
extent of non-uniformity of a distribution near a given
small phase-space region.

It is easy to see that (31) also characterizes the proba-
bility p of observing one particle inside ε: This probability
is determined by the ratio of the number N(ε) of events
of observing a particle inside ε to the total number Ntot
of events. Assuming that only one particle can be emitted
in each event, one has

p ≡ N(ε)
Ntot

=
N (ε)
Ntot

∝ εD, ε → 0. (32)

Now let us tern to the model. In fact, the γn(δΘ) has
the same meaning as the p defined in (32). The index n in
γn(δΘ) simply specifies the cascade stage n with the total
n + 1 particles, so that Dn stands the fractal dimension
of the phase-space distribution of a single particle on each
cascade stage. Then (23) describes a uniform particle dis-
tribution near Θ0 (no collinear singularity!). For the sec-
ond particle, there is no such a uniformity any more: The
collinear singularity of the emission of the second particle
is near Θ0 and this leads to a very inhomogeneous distri-
bution in this region, so that γ1(δΘ) ∝ δΘD1 , where D1
is a fractal dimension of this distribution (D1 < D0 = 1).
For the next emissions, the distribution should be even
more inhomogeneous since parent particles are already
non-uniformly distributed due to the collinear singulari-
ties and the angular ordering. Finally this leads to the
condition Dn ≥ Dn+1 guessed in (25).

The Dn are the usual fractal dimensions. However, af-
ter many cascade steps with different Dn, one obtains a
multifractal behavior (29) of the BPs. For a monofrac-
tality (27), the phase-space distribution for each particle
in the cascade has to be characterized by a single fractal
dimension for all n, D0 6= D = D1 = D2 = . . ..

3.3 Connection with factorial-moment method

A widely used means to study local fluctuations is based
on the calculation of the normalized factorial moments [24]:

Fq(δΘ) =
〈n(n − 1) . . . (n − q + 1)〉

〈n〉q
, (33)

where n is the number of particles inside a restricted phase-
space interval δΘ, 〈. . .〉 is the average over all events. For
non-statistical fluctuations, Fq(δΘ) depend on the size of
the phase-space interval δΘ as Fq(δΘ) ∼ δΘ−φq , where φq

are intermittency indices.
If the size of phase space is asymptotically small, then

the following approximate relation between the Fq(δΘ)
and the BPs holds [17,18]:

Fq(δΘ) '
q∏

n=2

ηq+1−n
n (δΘ). (34)

From (34) and (29), one has

Fq(δΘ) ∝ δΘ−φq , φq =
q∑

n=2

(q − n + 1)αn, (35)

or, taking into account the expression for αn,

φq =
q∑

n=2

(q − n + 1) (Dn−2 − Dn−1). (36)

The case of no dynamical correlation corresponds to φq =
0. From (36), it follows that the only possibility for this
case is the condition

D0 = 1 = D1 = D2 = . . . . (37)

i.e., the next emitted partons are distributed over available
phase space purely randomly (uniformly).

The model allows a simple way to connect the Rényi
fractal dimension (see details in [7]) for factorial moments
with the usual fractal dimensions Dq in our model. The
Rényi fractal dimension Dq is defined via φq,

Dq = D − φq

q − 1
. (38)

From (36) one has,

Dq = D1 −
q∑

n=3

q − n + 1
q − 1

(Dn−2 − Dn−1), (39)

where we take into account that the topological dimension
D is equal to D0. From here one can again see that the
monofractality (Dq = const) is possible only if Dn−1 =
Dn, for n > 1. A variation of Dq with q for the multifractal
case can be due to Dn−1 6= Dn.

In fact, the information about the fractal dimensions
Dn can be extracted from the study of both Dq (for facto-
rial moments) or αq (for bunching parameters). However,
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the study of the BPs is the most direct way to obtain the
information on Dn:

1) In contrast to the BPs, the power-like behavior
of the normalized factorial moments holds only approx-
imately for one dimensional variables because of a satura-
tion effect for small rapidity intervals (see [6,7,12]).

2) The BP ηq of order q is a differential tool, resolv-
ing only the difference Dq−2 − Dq−1 between the fractal
dimensions Dn (see (29)). In contrast, the normalized fac-
torial moment Fq of order q is an “integral” tool, which
is sensitive to to all Dn with n − 1 < q. Because of the
factor in the sum (39), the contribution from Dn at small
n is the largest. Hence, small changes in the behavior of
Dn for large n may be hidden due to contributions from
Dn for small n.

3.4 Experimental data

The multifractal behavior (29) of BPs is characteristic for
many different reactions [17]. For example, for rapidity
variable with respect to the trust axis, BPs depend on the
size of rapidity interval δy as

ηq(δy) = β
′
q δy−αq , q ≥ 2, (40)

where β
′
q and αq are positive constants. This can be con-

sidered as an evidence that local fluctuations have a scale-
invariant structure, ηq(λδy) = λ−αqηq(δy), i.e. the behav-
ior is invariant under change of scale.

Usually, the power law (40) is represented in terms of
the number M = Y/δy of bins of size δy covering a full
phase-space volume Y , so that (40) becomes

ηq(M) = β
′
q Mαq . (41)

Taking the logarithm from both sides, the power law can
be written as the linear expression

ln ηq(M) = αq lnM + βq, βq = lnβ′
q. (42)

For e+e− annihilations, such a behavior has been ob-
served for rapidity defined with respect to the thrust axis
(see Fig. 2 and [12,17,18]). That the αq are not zero and
vary with q is a direct indication that the fluctuations in
y are multifractal. Table 1 shows the values of αq and βq

obtained using a fit by (42). To avoid trivial effects due
to a bell-shaped structure of the multiplicity distribution
at small M , the fit is limited to ln M > 3 for q = 2 and
lnM > 2 for q > 2.

Figure 3 and Table 1 show the predictions of the JET-
SET 7.4 PS [13] model with the L3 default parameters
[22]. The charged final-state hadrons were generated at
91.2 GeV. The total number of events is 2.0M. The re-
gions lnM < 3 (for η2 and η3) and lnM < 2 (for η4)
were excluded from the fits. Note also that χ2 test for the
Monte Carlo is rather poor since, for the large statistics
used, the behavior of ηq(M) shows a clear complex struc-
ture caused by the presence of resonance decay products
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Fig. 2. BPs for rapidity defined with respect to the thrust
axis for e+e− processes. Here M = Y/δy, where Y is the size
of full rapidity interval, δy is the restricted rapidity interval.
The data are reproduced from [12]. The lines represent the fit
by (42) with the parameters presented in Table 1
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Fig. 3. BPs for rapidity defined with respect to the thrust axis
for JETSET 7.4 PS model. The lines show the fit by (42) with
the parameters presented in Table 1

and the points for different M are not statistically inde-
pendent.

Table 2 shows the fractal dimensions Dn obtained us-
ing (29). The values of Dn decrease with increasing n,
indicating that the degree of non-homogeneity of the dis-
tributions increases for particles emitted in the cascade
later.

4 Model predictions

We have now set up a formalism that handles the local
scale-invariant fluctuations inside a cascade. Qualitatively,
the model proposed above can reproduce the power-like
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Table 1. Fit results for ηq(M) obtained from the e+e− data [12]. The linear function (42)
is used

αq βq χ2/df αq βq χ2/df
data JETSET 7.4 PS

q = 2 0.016 ± 0.004 0.244 ± 0.018 0.8/8 0.0206 ± 0.0005 0.224 ± 0.002 2.4/11
q = 3 0.042 ± 0.003 0.08 ± 0.01 8/12 0.0434 ± 0.0007 0.075 ± 0.003 22/13
q = 4 0.062 ± 0.004 0.01 ± 0.01 9/12 0.068 ± 0.001 −0.016 ± 0.004 36/10
q = 5 0.071 ± 0.008 −0.03 ± 0.02 14/11 0.081 ± 0.002 −0.049 ± 0.004 91/10
q = 6 − − − 0.072 ± 0.002 −0.019 ± 0.005 48/10
q = 7 − − − 0.088 ± 0.003 −0.053 ± 0.006 64/8

Table 2. The values of fractal dimensions Dn obtained from
the experimental data and JETSET 7.4 PS. (see (30) and Ta-
ble 1)

data JETSET 7.4 PS
n = 0 1.0 1.0
n = 1 0.984 ± 0.004 0.9794 ± 0.0005
n = 2 0.942 ± 0.005 0.936 ± 0.001
n = 3 0.888 ± 0.006 0.868 ± 0.001
n = 4 0.81 ± 0.01 0.787 ± 0.002
n = 5 − 0.715 ± 0.003
n = 6 − 0.627 ± 0.004

dependence of BPs observed in e+e− data [12] and other
process [17].

A most direct prediction of this approach is that the
power-like behavior of the BPs is energy independent: The
local fluctuations are determined by γn(δ) in (18). They,
in turn, depend only on the fractal dimensions Dn. As a
result, parameters αq determining the phase-space fluctu-
ations in (29) are t-independent.

The model, however, has only low predictive power
unless we reduce the number of free parameters Dn in
(29). To do this, let us rewrite the Dn as

Dn = D0 − An, (43)

so that positive An represents the deviation of fluctua-
tions from the trivial ones (An = 0 actually corresponds
to the case of no correlations or uniform cascade distribu-
tions). We shall call the parameters An as the strength of
dynamical correlations on the n + 1 multiplicity stage of
the branching. Since Dn−1 ≥ Dn, we have

A0 = 0 ≤ A1 ≤ A2 ≤ . . . ≤ An. (44)

The physical meaning of An is rather clear: An is de-
termined by the collinear singularities of gluon emission
and the extent of interference between soft partons lead-
ing to angular ordering. Generally, however, An may ab-
sorb many other physical effects in jet beyond DLLA. This
quantity can incorporate effects from energy-momentum
balance (recoil effect) in two-parton splittings, heavy
quark production and non-perturbative effects: hadroniza-
tion, resonance decay and Bose-Einstein correlations.
Since contributions from these effects are poorly known
and at present cannot be taken into account in analytical

calculations, below we shall make an attempt to treat An

on a general statistical ground.

Several remarkable features of An are immediately ap-
parent:

a) An characterizes a single particle inside δΘ belong-
ing to a system with n other particles already produced
inside this interval at the previous cascade stages.

b) Since An is connected with correlations/fluctu-
ations, one can consider it as a strength of “interaction”
of a single particle with another. According to (44), such
an interaction becomes stronger with the increase of mul-
tiplicity n.

These two features suggest that An is analogous to the
binding (pairing) energy per nucleon in nuclear physics.
Using this analogy, the form of An can be readily deduced
without detailed information on correlations.

Let us first consider the following two extreme cases:

1) Since the Markov chain is based on two-particle
splittings, one can assume that there exist positive cor-
relations only between the particles a1 and a2 of the two-
particle splitting a1 → a1 + a2, which is a basic element
of the Markov chain. From a statistical point of view, the
effect tends to make two partons more strongly bound
in phase space, i.e., the probability that particles a1 and
a2 occupy a very small phase-space bin is larger than that
without dynamical correlations. After the next splitting of
each particle, one has 2 two-particle pairs. For an (n+1)-
particle system, the number of pairs stemming from the
two-particle splittings is (n + 1)/2, and we can write

An = AT n + 1
2

, (45)

where AT is a constant describing the pair correlation in
the case of two-particle correlations.2 Note that the ap-
plicability of (45) for odd n is only an approximation to
make the correlations easy to handle. We shall correct this
expression later.

2 The two-particle and multiparticle correlations introduced
in our statistical model to describe the cascade have nothing
to do with the two-particle and multiparticle correlations in
the final-state hadrons measured by means of the two-particle
and multiparticle correlation functions [7]. We borrowed these
terms following an analogy with the Weizsäcker mass formula
for the binding energy per nucleon in nuclear physics
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If only two-particle correlations (45) exist, then one
obtains from (43) and (29)

Dn = D0 − AT n + 1
2

, (46)

α2 = AT, αq≥3 = 0.5 AT. (47)

The behavior αq = 0.5α2 has been found to correspond
to multiplicity fluctuations in pp̄ collisions [17]. However,
e+e− data show a stronger multifractal signal. The behav-
ior of (46) with AT=0.016 for the e+e− data is shown in
Fig. 4 (AT > 0, AM = 0). The value of AT is equal to
α2 taken from the experimental data (see Table 1). The
model fails to reproduce the n-dependence of Dn for data
and JETSET model.

2) Now let us consider another limiting case of correla-
tions. Let us assume that each particle of a given (n+1)th
particle generation is attracted in equal extent by all of
the other n particles already produced. There are exactly
n(n + 1)/2 interactions between n + 1 particles uniformly
distributed over the small phase-space volume. (Such a
uniformity must, of course, be treated as an average over
all events.) Hence, the correlation strength is (see Fig. 5)

An = AM n(n + 1)
2

, (48)

where AM is a constant characterizing the correlation be-
tween any two particles. It completely determines many-
particle correlations in such a system.

Having made this simple assumption, one has

Dn = D0 − AM n(n + 1)
2

, (49)

and, according to (29), the power-law indices for the BPs
in the form

α2 = AM, αq≥3 = AM(q − 1). (50)

A  = 3A

                  n=2                      n=3

A  = 6AA  = A M M M

A A

A

M M

M

1 2 3

n=1             

Fig. 5. A schematic representation of the multiparticle corre-
lations for an (n + 1)-particle system (n = 1, 2, 3)

The result for AM = 0.016 is shown in Fig. 4 (AT = 0,
AM > 0). As we see, this prediction is rather close to
the experimental result. However, it still cannot give a
satisfactory description of the data and JETSET model.
In fact, such a disagreement is not a surprise since we
systematically ignored the trivial fact that particles can
interact with different strength.

As was mentioned, to some extent, An is analogous
to the binding (pairing) energy per nucleon in nuclear
physics. In fact, expression (45) is analogous to the “vol-
ume” effect if the nuclear density is roughly constant.
Then each nucleon has about the same number of neigh-
bors and (45) actually represents the short-range corre-
lations. Then (48) is analogous to the Coulomb repulsion
term in the Weizsäcker mass formula which is proportional
to [25]

−α
Z(Z − 1)

2
, (51)

where Z is the number of protons and α = e2/4π is the
fine-structure constant of QED. The negative sign implies
a reduction in binding energy. For QCD, of course, the
Coulomb interaction is not the dominant part of the cor-
relations and the introduced correlations should be at-
tributed to other reasons.

Following the same logic, An can be constructed analo-
gously to the semi-empirical Weizsäcker mass formula by
combining the different types of correlations and taking
into account the obvious properties of the particle system
in question. To see this, let us consider the following cas-
cade chain:

a1 → (a1 + a2) → (a1 + a3) + a2 → . . . ,

where the an represents a parton in independent sequen-
tial splittings. The particles in parentheses are pairs aris-
ing due to two-particle splitting of parent particles on each
stage. It is natural to assume that correlations between
particles in the parentheses are different from those be-
tween the particles that have already been produced. For
example, the particles in the pairs (a1, a2) and (a2, a3) pro-
duced on the three-particle stage can also be correlated,
but to an extent different from those in the pair (a1, a3)
which stem directly from the two-particle splitting. Thus
to make a step towards a more realistic description, it is
necessary to take into account a non-homogeneity of par-
ton interactions in the cascade.
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First of all, let us describe the correlations between the
particles in two-particle splittings. For this, we should take
into account the odd-even effect in the two-particle corre-
lations which is important for small n (this was dropped
for simplicity in (45)). A corrected expression (45) reads
as

AT
n ≡ AT ×

{
(n + 1)/2, for n = 1, 3, 5, . . .
n/2, for n = 2, 4, 6, . . .

(52)

The next step is to take into account the multiparticle
correlations arising between the particles produced in the
previous stages of the cascade. As before, to simplify our
considerations, we assume that this kind of (multiparticle)
correlations can be characterized by a single parameter
AM responsible for the correlation between any particles
stemming from different parents. For any n-particle sys-
tem, the form of these correlations can be obtained by
subtracting from a term of the form (48), representing all
possible pair correlations, a term like (52) describing two-
particle correlations which are taken into account by (52).
The final expression reads

AM
n ≡ AM n(n + 1)

2
−AM×

{
(n + 1)/2, for n = 1, 3, 5, . . .
n/2, for n = 2, 4, 6, . . .

(53)
The last step is to combine both contributions to-

gether,
Dn = D0 − AT

n − AM
n , (54)

α2 = AT, αq≥3 = AT
q−1 + AM

q−1 − AT
q−2 − AM

q−2. (55)

Expressions (52), (53), (54) and (55) explicitly describe
the behavior of the correlations in the cascade on the ba-
sis of the two parameters AT and AM. The parameter AT

describes the correlation between particles stemming from
the same parent particle and AM characterizes the correla-
tion between the particles coming from different parents.
As in nuclear physics,3 we allow these constants to be ad-
justable and consider AT and AM as free parameters which
can be evaluated from the fit.

The parameters AM and AT can be obtained from the
two experimental parameters α

exp
2 and α

exp
3 describing

the power-law behavior of BPs:

AT = α
exp
2 , (56)

AM = α
exp
3 /2. (57)

Further evolution of the Dn and the αq can be predicted
by the model according to (54) and (55). For the e+e−
data presented in Table 1, one obtains AT = 0.016±0.004
and AM = 0.021±0.002. The predictions for Dn are shown
in Fig. 4 (AT, AM > 0). The dashed lines show the uncer-
tainty in the behavior of Dn due to the statistical errors
on AT and AM. Our predictions agree with the experimen-
tal data well. The agreement with the JETSET becomes

3 In nuclear physics the situation is somewhat different: AT
n

provides a “volume” binding effect with positive sign and AM
n

has negative sign that implies a reduction in binding energy

better if one uses the values of α2 and α3 from the Monte-
Carlo model to determine AT and AM.

Note that expressions (54) and (55) cannot be valid
for asymptotically large n since the fractal dimensions Dn

cannot be smaller then zero.

5 Discussion of the model predictions

One of the striking features of the results obtained is that
good agreement between the model and the data is pos-
sible only if the value of AT is smaller than that of AM.
This means that the binding effect between two particles
from the same parent must be smaller than that between
particles produced earlier from different parent particles,
i.e., the particles originating from different parents have a
larger chance of being emitted very close to each other.

There are a number of possible explanations for this
effect. If one believes that the model describes the per-
turbative QCD cascade, the reason for this may come di-
rectly from the color coherence effects. Indeed, the fact
that AM > 0 can be due to the angular ordering: For a
given cascade stage with multiplicity n, collective correla-
tion effects should exist between each particle due to the
angular ordering history of the previous stages. Then the
smallness of AT can be explained by recoil effects and the
minimal value of the relative transverse momentum k⊥ of
decay products in the cascade evolution, in order to ensure
that partons have enough time to radiate, in their turn,
new offspring [1]. The latter effect leads to a restriction
on the relative emission angels between the particles a1
and a2 in the two-particle splitting a1 → a1 + a2. From a
statistical point of view, the effect tends to make the two
partons less tightly bound in phase space, i.e., the prob-
ability that both a1 and a2 particles occupy a very small
phase-space bin is less than that without the restriction
on the angle. If the reason for the condition AT < AM

indeed comes from perturbative QCD, AT
n has to be con-

nected with the momentum transfer cut-off Q0 that limits
the relative k⊥ and plays the role of an effective mass of
a parton.

On the other hand, it is reasonable to think that the
proposed formulation of the branching process is suffi-
ciently general and can utilize non-perturbative effects as
well. In fact, the branching can be attributed to a cer-
tain degree to hadronization and resonance decay. Then,
the multiparticle correlations can arise due to the color
exchange between the partons at the end of the perturba-
tive regime of QCD branching, necessary for parton dis-
coloration. Furthermore, if the partons are replaced by
hadrons, the large multiparticle correlations can be at-
tributed to Bose-Einstein interference between identical
pions, since these particles are usually produced by dif-
ferent parent ones. Then the smallness of AT

n can be ex-
plained by an anti-correlation trend between decay prod-
ucts of resonances.

Note also that the model can be used for various com-
plex non-point-like processes. In this context, one can con-
sider the evolution of the multiplicity distributions for
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clusters, fireballs, resonances etc., taking into account pe-
culiar features of these processes and introducing addi-
tional (or other) correlation terms in (54).

6 Summary and conclusion

In this paper we developed a new concept of local scale-
invariant fluctuations in branching processes. In contrast
to the approaches based on many-particle QCD correla-
tion functions [2,3] and phenomenological continuous den-
sities [24], we adopted a method based on single-particle
probabilities (or single-particle probability densities) for
each cascade stage. They are characterized by the frac-
tal dimensions Dn determining a non-uniformity in phase-
space distributions for each particle emitted into a small
phase-space domain. Such an idea simplifies the picture
of phase-space organization of particles inside the cascade
and allows us to take into account the finiteness of the
number of particles in the cascade (or finite energy), QCD
color coherence effects and a heterogeneity of correlations
between partons belonging to the different cascade gener-
ations.

The fractal dimensions Dn can be experimentally ob-
served by calculating the BPs which resolve the difference
Dn−1−Dn, according to (29). A less direct way to measure
Dn can be performed from the study of the normalized
factorial moments (see (36)).

The model suggests and makes experimentally acces-
sible new physical quantities - pair correlation coefficients
AM and AT determining Dn. The fact that none of these
parameters are zero is due to the collinear singularities
of the emission probabilities of soft partons. However, the
way how these parameters determine the directly observ-
able Dn can be due to many reasons. In this paper we
suggest such a relationship using a general statistical for-
malism, which, in terms of QCD, may absorb the details
of coherence effects, high-order perturbative corrections,
recoil effects and non-perturbative phenomena, i.e. all the
effects which at present can be combined together only on
the basis of Monte-Carlo simulations. We allow AM and
AT to be adjustable that ultimately leads to good quanti-
tative agreement with the local fluctuations in e+e− pro-
cesses.

The model predicts that the experimentally observable
parameters Dn determining the scale-invariant behavior
of BPs ηq(δ) are energy independent. In addition, they
do not depend on details of Markov equation in the full
phase space. Both features follow from the factorization
scheme used to derive the local fluctuations from the clas-
sical Markov branching equation for jet evolution and the
angular ordering scheme which helps to construct the local
version of this equation. Therefore, to check this approach,
precise data on the behavior of the BPs with energy are
needed.

Another model prediction is a suppression of positive
correlations between the off-spring particles, AM > AT,
a feature which can directly be detected from the study
of q-dependence of the BPs. This prediction is also model
dependent and the next step would be to understand how

this effect can be changed if one uses another physical
motivated parameterizations.

In spite of its simplicity, the model describes the corre-
lations between partons in branchings beyond the scope of
the Leading Log Approximation of QCD. To leading order
in lnQ2, partons are free elementary quanta. Evidently,
this situation corresponds to the particular case Dn = 1
(for all n) in our scheme. Since the model is constructed
on the basis of angular ordering, it takes advantage of the
DLLA. However, for very small δ, the perturbative QCD
ceases to be valid, since Q0 sets the limit of validity of
the smallest bin size and perturbative expansion of QCD.
Hence, dealing with very small phase-space intervals, our
model goes beyond the perturbative QCD approximations
studied in [2]. At the same time, the model can take into
account non-perturbative effects which are important if
one goes beyond single-particle densities. It is evident that
the price to pay for this progress in the description of
multiparticle correlations inside jet is a purely statistical
formalism eliminating the momentum dependence.
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